Na Young Jun

Employment _____

Meta Reality Labs RESEARCH SCIENTIST INTERN (CTRL TEAM) - COMPUTATIONAL MODELING • Built machine learning models for EMG-based neuromotor interfaces

Neuromatch Academy Deep Learning

LEAD TEACHING ASSISTANT

• Taught various topics on deep learning to professors, postdocs, and grad students, and led discussion sessions.

Education _____ Duke University

Duke University Ph.D. in Neurobiology (expected Dec 2022, GPA 3.84/4.00) M.S. in Computer Science (en-route, GPA 3.95/4.00)	Durham, NC Aug 2017 - Dec 2022
Yale University M.S. in Bioengineering (GPA 3.63/4.00, received Mogam Science Foundation Scholarship)	New Haven, CT Aug 2014 - May 2015
Korea University B.S. in Life Sciences (GPA 3.60/4.00, received Korea University Academic Scholarship) Student Exchange at University of Wisconsin-Madison (received Mirae Asset Scholarship)	Seoul, S. Korea Mar 2009 - July 2014
Selected Publications	
Efficient coding, channel capacity, and the emergence of retinal mosaics Na Young Jun, Greg D. Field, John Pearson in <i>NeurIPS</i>	2022
Scene statistics and noise determine the relative arrangement of receptive field mosaics Na Young Jun, Greg D. Field, John Pearson in <i>PNAS</i>	2021
Inter-Mosaic Coordination of Retinal Receptive Fields Suva Roy, Na Young Jun, Emily Davis, John Pearson, Greg D. Field in Nature	2021
Bubblewrap: Online tiling and real-time flow prediction on neural manifolds Anne Draelos, Pranjal Gupta, Na Young Jun, Chaichontat Sriworarat, John Pearson, in <i>NeurIPS</i>	2021
Coordinated multiplexing of information about separate objects in visual cortex NA YOUNG JUN , DOUGLAS A RUFF, LILY E. KRAMER, BRITTANY BOWES, SURYA T TOKDAR, MARLENE R COHEN, JENNIFER M GROH, IN <i>BIORXIV (UNDER REVIEW)</i>	2019
Channelrhodopsin Variants Engage Distinct Patterns of Network Activity Na Young Jun and Jessica A. Cardin, in <i>eNeuro</i>	2018
Conference Presentations	
Efficient Coding of Natural Movies Predicts the Optimal Number of Receptive Field Mosaics Na Young Jun, Greg Field, John Pearson in <i>Cosyne</i>	2022
The Influence of noise and information non-uniformity on the efficient coding of natural scen Na Young Jun, Greg Field, John Pearson in <i>Cosyne</i>	1es 2020
Fluctuating Activity (Time-Division Multiplexing) Varies Across Sensory Brain Regions Na Young Jun, Jeff Mohl, Marlene Cohen, Surya Tokdar, Jennifer Groh, in <i>Society for Neuroscience</i>	2018
Optogenetic Tools With Varying Kinetics Differentially Engage Intrinsic Network Resonance In NA YOUNG JUN AND JESSICA A. CARDIN, IN SOCIETY FOR NEUROSCIENCE	2016

May 2022 - Aug 2022

Burlingame, CA

Global 2021

希 nayoungjun.github.io | 🔤 nayoung.jun@duke.edu | 📱 Google Scholar | 🎔 nayoung_jun | 🛅 nayoungjun

Invited Talks

Efficient coding of natural scenes predicts the optimal number of receptive field mosaics		
and their spatial arrangements.	Daejeon, Korea	
Human-Powered Healthcare Webinar Series, KAIST	2022	
The optimal spatial arrangement of ON and OFF receptive fields	Seoul, Korea	
Physiology Monthly Seminar, School of Medicine, Korea University	2022	
Optimal Spatial Arrangement of ON and OFF Encoders in the Noisy World:		
Under the Perspective of Information Efficiency	Durham, NC	
Neurobiology Graduate Students Seminar, Duke University	2020	
Observe the Unobserved: Inferring Hidden Structure in Multilayer Neural Circuits	Durham, NC	
NEUROBIOLOGY GRADUATE STUDENTS SEMINAR, DUKE UNIVERSITY	2018	
Novel Optogenetic Tools for Probing Network Activity in the Intact Brain	New Haven, CT	
BIOMEDICAL ENGINEERING MASTER'S GRADUATION TALK, YALE UNIVERSITY	2015	

Research Experience _____

Field Lab (PI: Greg Field) & Pearson Lab (PI: John Pearson), Duke University	

DOCTORAL THESIS RESEARCH

- Computational understanding of retinal information processing using deep learning networks and information theory. Built a model of the retina using neural networks, optimized using the efficient coding principle on natural video inputs.
- The model provides a unified perspective on the relationship between retinal mosaics, efficient coding, and channel capacity that may help to explain the stunning functional diversity of retinal mosaics.
- published multiple papers in Nature, PNAS, and NeurIPS.

Groh Lab (PI: Jennifer Groh), Duke University

FIRST YEAR PH.D. ROTATIONS

• Studied patterns of neural correlations and time-division multiplexing in visual cortex (V1, V4) with respect to the number of objects in the visual field.

Grill Lab (PI: Warren Grill), Duke University

FIRST YEAR PH.D. ROTATIONS

Single-unit recordings of Parkinsonian Rat brain during DBS stimulation to understand how DBS affects brain plasticity.

Kay Lab (PI: Jeremy Kay), Duke University

FIRST YEAR PH.D. ROTATIONS

• Live-imaging of microglial function in the retina.

Demb Lab (PI: Jonathan B. Demb), Yale University

POSTGRADUATE RESEARCH ASSOCIATE

Characterized new cell types in the mouse retina based on their structure, function and gene expression.

Cardin Lab (PI: Jessica A. Cardin), Yale University

MASTER'S THESIS RESEARCH

- Studied spontaneous and activated optogenetic tool-induced gamma oscillations in the mouse visual cortex in vivo.
- Injected several novel optogenetic tools (Chrimson, Chronos, SwiChR) and Channelrodopsin2 to the V1 cortex of mice brain and compared their in vivo activation, and conducted extracellular recording to compare spike rates and local field potential between mice with different optogenetic tools.

Advanced Computational Vision (Instructor: Steven Zucker), Yale University

CLASS FINAL PROJECT

• Trained neural signal classifiers that distinguish between brain states (awake or anesthetized, moving or not moving, receiving visual stimuli or not) and which cortex layers the neural signal originated.

Skills

Programming	PyTorch, Python, MATLAB, Java, R
Biological Experiments	Electrophysiology (intracellular / extracellular neural recording), animal behavior, IHC

Apr 2018 - Jun 2018

Durham, NC Jul 2018 - Present

Durham, NC

Durham, NC

Durham, NC Sep 2017 - Jan 2018

Jan 2018 - Apr 2018

New Haven, CT Jul 2015 - Aug 2017

New Haven, CT

Aug 2014 - May 2015

New Haven, CT

Jan 2015 - May 2015